
5. Language Models and
Recurrent Neural Networks
LING-581-Natural Language Processing 1

Instructor: Hakyung Sung
September 23, 2025
*Acknowledgment: These course slides are based on materials from CS224N @ Stanford University; Dr. Kilho Shin @ Kyocera

Table of contents

1. Lesson plan

2. Language modeling

3. n-gram language models

4. Window-based neural language models

5. RNNs

6. Wrap-up

1

Review

Review

• Syntactic structure: Consistency and dependency
• Dependency grammar and treebanks
• Dependency parsing
• Transition-based dependency parsing
• Neural dependency parsing

2

Review: Dependency grammar vs. Constituency parsing

3

Review: Universal dependency grammar

Sourced from De Marneffe, M. C., & Nivre, J. (2019). Dependency grammar. Annual Review of Linguistics, 5(1), 197-218. Figure 4

“UD gives priority to dependency relations between content words,
while function words are attached to the content word.”

4

Review: Universal dependency grammar

Sourced from De Marneffe, M. C., & Nivre, J. (2019). Dependency grammar. Annual Review of Linguistics, 5(1), 197-218. Figure 4

“UD gives priority to dependency relations between content words,
while function words are attached to the content word.”

4

Review: Universal dependency grammar

Sourced from De Marneffe, M. C., & Nivre, J. (2019). Dependency grammar. Annual Review of Linguistics, 5(1), 197-218. Figure 6

“The goal is to support multilingual research in NLP and linguistics
by enabling sound comparative evaluation across languages.”

5

Review: Universal dependency grammar

Sourced from De Marneffe, M. C., & Nivre, J. (2019). Dependency grammar. Annual Review of Linguistics, 5(1), 197-218. Figure 6

“The goal is to support multilingual research in NLP and linguistics
by enabling sound comparative evaluation across languages.”

5

Review: Terminology

• treebank
• UAS vs. LAS

6

Greedy transition-based parsing: Example

Sentence: I saw him

Initial State: Stack = [ROOT], Buffer = [I, saw, him], Arcs = {}

Step Stack Buffer Transition New Arc
1 [ROOT] [I, saw, him] SHIFT —
2 [ROOT, I] [saw, him] SHIFT —
3 [ROOT, I, saw] [him] LEFT-ARC saw → I (subj)
4 [ROOT, saw] [him] SHIFT —
5 [ROOT, saw, him] [] RIGHT-ARC saw → him (obj)
6 [ROOT, saw] [] RIGHT-ARC ROOT → saw (root)

7

Choosing the next parsing action

How should we decide the next parsing action?

• Parsing hoice depends on the parsing algorithm:

• Greedy methods (Nivre, 2003)
• Beam search (Nivre & Hall, 2005)
• Neural approaches (Chen & Manning, 2014)
• Graph-based Biaffine approaches (Dozat & Manning, 2017)
• Current SOTA: Pre-trained transformers + graph-based biaffine
decoders?

8

Choosing the next parsing action

How should we decide the next parsing action?

• Parsing hoice depends on the parsing algorithm:
• Greedy methods (Nivre, 2003)

• Beam search (Nivre & Hall, 2005)
• Neural approaches (Chen & Manning, 2014)
• Graph-based Biaffine approaches (Dozat & Manning, 2017)
• Current SOTA: Pre-trained transformers + graph-based biaffine
decoders?

8

Choosing the next parsing action

How should we decide the next parsing action?

• Parsing hoice depends on the parsing algorithm:
• Greedy methods (Nivre, 2003)
• Beam search (Nivre & Hall, 2005)

• Neural approaches (Chen & Manning, 2014)
• Graph-based Biaffine approaches (Dozat & Manning, 2017)
• Current SOTA: Pre-trained transformers + graph-based biaffine
decoders?

8

Choosing the next parsing action

How should we decide the next parsing action?

• Parsing hoice depends on the parsing algorithm:
• Greedy methods (Nivre, 2003)
• Beam search (Nivre & Hall, 2005)
• Neural approaches (Chen & Manning, 2014)

• Graph-based Biaffine approaches (Dozat & Manning, 2017)
• Current SOTA: Pre-trained transformers + graph-based biaffine
decoders?

8

Choosing the next parsing action

How should we decide the next parsing action?

• Parsing hoice depends on the parsing algorithm:
• Greedy methods (Nivre, 2003)
• Beam search (Nivre & Hall, 2005)
• Neural approaches (Chen & Manning, 2014)
• Graph-based Biaffine approaches (Dozat & Manning, 2017)

• Current SOTA: Pre-trained transformers + graph-based biaffine
decoders?

8

Choosing the next parsing action

How should we decide the next parsing action?

• Parsing hoice depends on the parsing algorithm:
• Greedy methods (Nivre, 2003)
• Beam search (Nivre & Hall, 2005)
• Neural approaches (Chen & Manning, 2014)
• Graph-based Biaffine approaches (Dozat & Manning, 2017)
• Current SOTA: Pre-trained transformers + graph-based biaffine
decoders?

8

Thursday Lab

We’ll continue working on building/training a dependency parser;
I’ve updated the dataset.

9

Lesson plan

Lesson plan

• Language modeling
• n-gram language models
• Window-based neural language models
• RNNs

10

Language modeling

Language modeling

• Language modeling is the task of predicting the next word in a
sequence.

• Example:

the students opened their ____
{books, laptops, exams, minds}

• Formally, given a sequence 𝑥1, 𝑥2, … , 𝑥𝑡, we estimate

𝑃(𝑥𝑡+1 ∣ 𝑥1, 𝑥2, … , 𝑥𝑡).

• Here each 𝑥𝑖 (and the predicted 𝑥𝑡+1) is drawn from a vocabulary

𝒱 = { 𝑤1, 𝑤2, … , 𝑤|𝒱|}.

The symbol 𝑤𝑗 denotes the 𝑗-th word in 𝒱.

11

Language modeling

• Language modeling is the task of predicting the next word in a
sequence.

• Example:

the students opened their ____
{books, laptops, exams, minds}

• Formally, given a sequence 𝑥1, 𝑥2, … , 𝑥𝑡, we estimate

𝑃(𝑥𝑡+1 ∣ 𝑥1, 𝑥2, … , 𝑥𝑡).

• Here each 𝑥𝑖 (and the predicted 𝑥𝑡+1) is drawn from a vocabulary

𝒱 = { 𝑤1, 𝑤2, … , 𝑤|𝒱|}.

The symbol 𝑤𝑗 denotes the 𝑗-th word in 𝒱.

11

Language modeling

• Language modeling is the task of predicting the next word in a
sequence.

• Example:
the students opened their ____
{books, laptops, exams, minds}

• Formally, given a sequence 𝑥1, 𝑥2, … , 𝑥𝑡, we estimate

𝑃(𝑥𝑡+1 ∣ 𝑥1, 𝑥2, … , 𝑥𝑡).

• Here each 𝑥𝑖 (and the predicted 𝑥𝑡+1) is drawn from a vocabulary

𝒱 = { 𝑤1, 𝑤2, … , 𝑤|𝒱|}.

The symbol 𝑤𝑗 denotes the 𝑗-th word in 𝒱.

11

Language modeling

• Language modeling is the task of predicting the next word in a
sequence.

• Example:
the students opened their ____
{books, laptops, exams, minds}

• Formally, given a sequence 𝑥1, 𝑥2, … , 𝑥𝑡, we estimate

𝑃(𝑥𝑡+1 ∣ 𝑥1, 𝑥2, … , 𝑥𝑡).

• Here each 𝑥𝑖 (and the predicted 𝑥𝑡+1) is drawn from a vocabulary

𝒱 = { 𝑤1, 𝑤2, … , 𝑤|𝒱|}.

The symbol 𝑤𝑗 denotes the 𝑗-th word in 𝒱.

11

Language modeling

• Language modeling is the task of predicting the next word in a
sequence.

• Example:
the students opened their ____
{books, laptops, exams, minds}

• Formally, given a sequence 𝑥1, 𝑥2, … , 𝑥𝑡, we estimate

𝑃(𝑥𝑡+1 ∣ 𝑥1, 𝑥2, … , 𝑥𝑡).

• Here each 𝑥𝑖 (and the predicted 𝑥𝑡+1) is drawn from a vocabulary

𝒱 = { 𝑤1, 𝑤2, … , 𝑤|𝒱|}.

The symbol 𝑤𝑗 denotes the 𝑗-th word in 𝒱.

11

Language modeling

• A language model can also be viewed as a system that assigns a
probability to an entire sequence of tokens.

• For a text 𝑥1, … , 𝑥𝑇 , the joint probability is

𝑃(𝑥1, … , 𝑥𝑇)
= 𝑃(𝑥1) 𝑃(𝑥2 ∣ 𝑥1) ⋯ 𝑃(𝑥𝑇 ∣ 𝑥1, … , 𝑥𝑇 −1)

=
𝑇

∏
𝑖=1

𝑃(𝑥𝑖 ∣ 𝑥1, … , 𝑥𝑖−1)

• This decomposition follows directly from the chain rule of
probability.

12

Example: Sequence probability

• Consider the sentence: “I like apples”.

• The joint probability is decomposed as:

• 𝑃(“I”) = probability that “I” starts the sentence
• 𝑃(“like” ∣ “I”) = probability that “like” follows “I”
• 𝑃(“apples” ∣ “I like”) = probability that “apples” follows “I like”

• Multiplying these gives the overall probability of the sentence:

𝑃(“I like apples”) = 𝑃(“I”) ⋅ 𝑃 (“like” ∣ “I”) ⋅ 𝑃 (“apples” ∣ “I like”)

13

Example: Sequence probability

• Consider the sentence: “I like apples”.
• The joint probability is decomposed as:

• 𝑃(“I”) = probability that “I” starts the sentence
• 𝑃(“like” ∣ “I”) = probability that “like” follows “I”
• 𝑃(“apples” ∣ “I like”) = probability that “apples” follows “I like”

• Multiplying these gives the overall probability of the sentence:

𝑃(“I like apples”) = 𝑃(“I”) ⋅ 𝑃 (“like” ∣ “I”) ⋅ 𝑃 (“apples” ∣ “I like”)

13

Example: Sequence probability

• Consider the sentence: “I like apples”.
• The joint probability is decomposed as:

• 𝑃(“I”) = probability that “I” starts the sentence

• 𝑃(“like” ∣ “I”) = probability that “like” follows “I”
• 𝑃(“apples” ∣ “I like”) = probability that “apples” follows “I like”

• Multiplying these gives the overall probability of the sentence:

𝑃(“I like apples”) = 𝑃(“I”) ⋅ 𝑃 (“like” ∣ “I”) ⋅ 𝑃 (“apples” ∣ “I like”)

13

Example: Sequence probability

• Consider the sentence: “I like apples”.
• The joint probability is decomposed as:

• 𝑃(“I”) = probability that “I” starts the sentence
• 𝑃(“like” ∣ “I”) = probability that “like” follows “I”

• 𝑃(“apples” ∣ “I like”) = probability that “apples” follows “I like”
• Multiplying these gives the overall probability of the sentence:

𝑃(“I like apples”) = 𝑃(“I”) ⋅ 𝑃 (“like” ∣ “I”) ⋅ 𝑃 (“apples” ∣ “I like”)

13

Example: Sequence probability

• Consider the sentence: “I like apples”.
• The joint probability is decomposed as:

• 𝑃(“I”) = probability that “I” starts the sentence
• 𝑃(“like” ∣ “I”) = probability that “like” follows “I”
• 𝑃(“apples” ∣ “I like”) = probability that “apples” follows “I like”

• Multiplying these gives the overall probability of the sentence:

𝑃(“I like apples”) = 𝑃(“I”) ⋅ 𝑃 (“like” ∣ “I”) ⋅ 𝑃 (“apples” ∣ “I like”)

13

Example: Sequence probability

• Consider the sentence: “I like apples”.
• The joint probability is decomposed as:

• 𝑃(“I”) = probability that “I” starts the sentence
• 𝑃(“like” ∣ “I”) = probability that “like” follows “I”
• 𝑃(“apples” ∣ “I like”) = probability that “apples” follows “I like”

• Multiplying these gives the overall probability of the sentence:

𝑃(“I like apples”) = 𝑃(“I”) ⋅ 𝑃 (“like” ∣ “I”) ⋅ 𝑃 (“apples” ∣ “I like”)

13

You use language models every day!

14

You use language models every day!

15

Why should we care about language modeling?

• Language modeling is a benchmark task that helps us measure
our progress on predicting language use.

• Language modeling is a sub-component of many NLP tasks,
especially those involving generating text or estimating the
probability of text:

• predictive typing
• speech recognition
• handwriting recognition
• spelling/grammar correction
• authorship identification
• machine translation
• summarization
• dialogue
• etc.

• Everything else in NLP has been rebuilt upon language
modeling: ChatGPT is an LM!

16

Why should we care about language modeling?

• Language modeling is a benchmark task that helps us measure
our progress on predicting language use.

• Language modeling is a sub-component of many NLP tasks,
especially those involving generating text or estimating the
probability of text:

• predictive typing
• speech recognition
• handwriting recognition
• spelling/grammar correction
• authorship identification
• machine translation
• summarization
• dialogue
• etc.

• Everything else in NLP has been rebuilt upon language
modeling: ChatGPT is an LM!

16

Why should we care about language modeling?

• Language modeling is a benchmark task that helps us measure
our progress on predicting language use.

• Language modeling is a sub-component of many NLP tasks,
especially those involving generating text or estimating the
probability of text:

• predictive typing

• speech recognition
• handwriting recognition
• spelling/grammar correction
• authorship identification
• machine translation
• summarization
• dialogue
• etc.

• Everything else in NLP has been rebuilt upon language
modeling: ChatGPT is an LM!

16

Why should we care about language modeling?

• Language modeling is a benchmark task that helps us measure
our progress on predicting language use.

• Language modeling is a sub-component of many NLP tasks,
especially those involving generating text or estimating the
probability of text:

• predictive typing
• speech recognition

• handwriting recognition
• spelling/grammar correction
• authorship identification
• machine translation
• summarization
• dialogue
• etc.

• Everything else in NLP has been rebuilt upon language
modeling: ChatGPT is an LM!

16

Why should we care about language modeling?

• Language modeling is a benchmark task that helps us measure
our progress on predicting language use.

• Language modeling is a sub-component of many NLP tasks,
especially those involving generating text or estimating the
probability of text:

• predictive typing
• speech recognition
• handwriting recognition

• spelling/grammar correction
• authorship identification
• machine translation
• summarization
• dialogue
• etc.

• Everything else in NLP has been rebuilt upon language
modeling: ChatGPT is an LM!

16

Why should we care about language modeling?

• Language modeling is a benchmark task that helps us measure
our progress on predicting language use.

• Language modeling is a sub-component of many NLP tasks,
especially those involving generating text or estimating the
probability of text:

• predictive typing
• speech recognition
• handwriting recognition
• spelling/grammar correction

• authorship identification
• machine translation
• summarization
• dialogue
• etc.

• Everything else in NLP has been rebuilt upon language
modeling: ChatGPT is an LM!

16

Why should we care about language modeling?

• Language modeling is a benchmark task that helps us measure
our progress on predicting language use.

• Language modeling is a sub-component of many NLP tasks,
especially those involving generating text or estimating the
probability of text:

• predictive typing
• speech recognition
• handwriting recognition
• spelling/grammar correction
• authorship identification

• machine translation
• summarization
• dialogue
• etc.

• Everything else in NLP has been rebuilt upon language
modeling: ChatGPT is an LM!

16

Why should we care about language modeling?

• Language modeling is a benchmark task that helps us measure
our progress on predicting language use.

• Language modeling is a sub-component of many NLP tasks,
especially those involving generating text or estimating the
probability of text:

• predictive typing
• speech recognition
• handwriting recognition
• spelling/grammar correction
• authorship identification
• machine translation

• summarization
• dialogue
• etc.

• Everything else in NLP has been rebuilt upon language
modeling: ChatGPT is an LM!

16

Why should we care about language modeling?

• Language modeling is a benchmark task that helps us measure
our progress on predicting language use.

• Language modeling is a sub-component of many NLP tasks,
especially those involving generating text or estimating the
probability of text:

• predictive typing
• speech recognition
• handwriting recognition
• spelling/grammar correction
• authorship identification
• machine translation
• summarization

• dialogue
• etc.

• Everything else in NLP has been rebuilt upon language
modeling: ChatGPT is an LM!

16

Why should we care about language modeling?

• Language modeling is a benchmark task that helps us measure
our progress on predicting language use.

• Language modeling is a sub-component of many NLP tasks,
especially those involving generating text or estimating the
probability of text:

• predictive typing
• speech recognition
• handwriting recognition
• spelling/grammar correction
• authorship identification
• machine translation
• summarization
• dialogue

• etc.
• Everything else in NLP has been rebuilt upon language
modeling: ChatGPT is an LM!

16

Why should we care about language modeling?

• Language modeling is a benchmark task that helps us measure
our progress on predicting language use.

• Language modeling is a sub-component of many NLP tasks,
especially those involving generating text or estimating the
probability of text:

• predictive typing
• speech recognition
• handwriting recognition
• spelling/grammar correction
• authorship identification
• machine translation
• summarization
• dialogue
• etc.

• Everything else in NLP has been rebuilt upon language
modeling: ChatGPT is an LM!

16

Why should we care about language modeling?

• Language modeling is a benchmark task that helps us measure
our progress on predicting language use.

• Language modeling is a sub-component of many NLP tasks,
especially those involving generating text or estimating the
probability of text:

• predictive typing
• speech recognition
• handwriting recognition
• spelling/grammar correction
• authorship identification
• machine translation
• summarization
• dialogue
• etc.

• Everything else in NLP has been rebuilt upon language
modeling: ChatGPT is an LM!

16

How do we build a language model?

• Question: We want to estimate

𝑃(𝑥1, … , 𝑥𝑇) =
𝑇

∏
𝑖=1

𝑃(𝑥𝑖 ∣ 𝑥1, … , 𝑥𝑖−1)

• First idea: Approximate by looking only at a few previous words.
• This leads us to n-gram language models.

17

How do we build a language model?

• Question: We want to estimate

𝑃(𝑥1, … , 𝑥𝑇) =
𝑇

∏
𝑖=1

𝑃(𝑥𝑖 ∣ 𝑥1, … , 𝑥𝑖−1)

• First idea: Approximate by looking only at a few previous words.

• This leads us to n-gram language models.

17

How do we build a language model?

• Question: We want to estimate

𝑃(𝑥1, … , 𝑥𝑇) =
𝑇

∏
𝑖=1

𝑃(𝑥𝑖 ∣ 𝑥1, … , 𝑥𝑖−1)

• First idea: Approximate by looking only at a few previous words.
• This leads us to n-gram language models.

17

n-gram language models

n-gram language models

• Definition: An n-gram is a sequence of n consecutive words.

• Example: “the students opened their ______”

• Unigrams: the, students, opened, their
• Bigrams: the students, students opened, opened their
• Trigrams:
• 4-grams:

• Idea: Collect statistics about how often n-grams occur and use
them to predict the next word.

18

n-gram language models

• Definition: An n-gram is a sequence of n consecutive words.
• Example: “the students opened their ______”

• Unigrams: the, students, opened, their
• Bigrams: the students, students opened, opened their
• Trigrams:
• 4-grams:

• Idea: Collect statistics about how often n-grams occur and use
them to predict the next word.

18

n-gram language models

• Definition: An n-gram is a sequence of n consecutive words.
• Example: “the students opened their ______”

• Unigrams: the, students, opened, their

• Bigrams: the students, students opened, opened their
• Trigrams:
• 4-grams:

• Idea: Collect statistics about how often n-grams occur and use
them to predict the next word.

18

n-gram language models

• Definition: An n-gram is a sequence of n consecutive words.
• Example: “the students opened their ______”

• Unigrams: the, students, opened, their
• Bigrams: the students, students opened, opened their

• Trigrams:
• 4-grams:

• Idea: Collect statistics about how often n-grams occur and use
them to predict the next word.

18

n-gram language models

• Definition: An n-gram is a sequence of n consecutive words.
• Example: “the students opened their ______”

• Unigrams: the, students, opened, their
• Bigrams: the students, students opened, opened their
• Trigrams:

• 4-grams:

• Idea: Collect statistics about how often n-grams occur and use
them to predict the next word.

18

n-gram language models

• Definition: An n-gram is a sequence of n consecutive words.
• Example: “the students opened their ______”

• Unigrams: the, students, opened, their
• Bigrams: the students, students opened, opened their
• Trigrams:
• 4-grams:

• Idea: Collect statistics about how often n-grams occur and use
them to predict the next word.

18

n-gram language models

• Definition: An n-gram is a sequence of n consecutive words.
• Example: “the students opened their ______”

• Unigrams: the, students, opened, their
• Bigrams: the students, students opened, opened their
• Trigrams:
• 4-grams:

• Idea: Collect statistics about how often n-grams occur and use
them to predict the next word.

18

n-gram language models: 1. Markov assumption

𝑃(𝑥𝑡+1 ∣ 𝑥𝑡, … , 𝑥1) ≈ 𝑃 (𝑥𝑡+1 ∣ 𝑥𝑡, … , 𝑥𝑡−𝑛+2)

• 𝑡: position of the current token in the sequence
• 𝑛: size of the 𝑛-gram (the model looks back 𝑛 − 1 tokens)

Only the last (𝑛 − 1) words matter.

• We assume that distant history does not strongly influence the
next word.

• This reduces the problem from “consider the whole history” to
“just a short context window.”

• Analogy: Predicting the next word is like continuing a
conversation. (i.e., You don’t need to remember everything said
5 minutes ago, just the last few words.)

19

n-gram language models: 1. Markov assumption

𝑃(𝑥𝑡+1 ∣ 𝑥𝑡, … , 𝑥1) ≈ 𝑃 (𝑥𝑡+1 ∣ 𝑥𝑡, … , 𝑥𝑡−𝑛+2)

• 𝑡: position of the current token in the sequence
• 𝑛: size of the 𝑛-gram (the model looks back 𝑛 − 1 tokens)

Only the last (𝑛 − 1) words matter.

• We assume that distant history does not strongly influence the
next word.

• This reduces the problem from “consider the whole history” to
“just a short context window.”

• Analogy: Predicting the next word is like continuing a
conversation. (i.e., You don’t need to remember everything said
5 minutes ago, just the last few words.)

19

n-gram language models: 1. Markov assumption

𝑃(𝑥𝑡+1 ∣ 𝑥𝑡, … , 𝑥1) ≈ 𝑃 (𝑥𝑡+1 ∣ 𝑥𝑡, … , 𝑥𝑡−𝑛+2)

• 𝑡: position of the current token in the sequence
• 𝑛: size of the 𝑛-gram (the model looks back 𝑛 − 1 tokens)

Only the last (𝑛 − 1) words matter.

• We assume that distant history does not strongly influence the
next word.

• This reduces the problem from “consider the whole history” to
“just a short context window.”

• Analogy: Predicting the next word is like continuing a
conversation. (i.e., You don’t need to remember everything said
5 minutes ago, just the last few words.)

19

n-gram language models: 1. Markov assumption

𝑃(𝑥𝑡+1 ∣ 𝑥𝑡, … , 𝑥1) ≈ 𝑃 (𝑥𝑡+1 ∣ 𝑥𝑡, … , 𝑥𝑡−𝑛+2)

• 𝑡: position of the current token in the sequence
• 𝑛: size of the 𝑛-gram (the model looks back 𝑛 − 1 tokens)

Only the last (𝑛 − 1) words matter.

• We assume that distant history does not strongly influence the
next word.

• This reduces the problem from “consider the whole history” to
“just a short context window.”

• Analogy: Predicting the next word is like continuing a
conversation. (i.e., You don’t need to remember everything said
5 minutes ago, just the last few words.)

19

n-gram language models: 2. conditional probability

• Definition: Conditional probability is

𝑃(𝐴 ∣ 𝐵) = 𝑃(𝐴, 𝐵)
𝑃(𝐵) .

• Apply this to n-grams:

𝑃(𝑥𝑡+1 ∣ 𝑥𝑡, … , 𝑥𝑡−𝑛+2) = 𝑃(𝑥𝑡+1, 𝑥𝑡, … , 𝑥𝑡−𝑛+2)
𝑃 (𝑥𝑡, … , 𝑥𝑡−𝑛+2) .

• e.g., the cat is cute

20

n-gram language models: 2. conditional probability

• Definition: Conditional probability is

𝑃(𝐴 ∣ 𝐵) = 𝑃(𝐴, 𝐵)
𝑃(𝐵) .

• Apply this to n-grams:

𝑃(𝑥𝑡+1 ∣ 𝑥𝑡, … , 𝑥𝑡−𝑛+2) = 𝑃(𝑥𝑡+1, 𝑥𝑡, … , 𝑥𝑡−𝑛+2)
𝑃 (𝑥𝑡, … , 𝑥𝑡−𝑛+2) .

• e.g., the cat is cute

20

n-gram language models: 2. conditional probability

• Definition: Conditional probability is

𝑃(𝐴 ∣ 𝐵) = 𝑃(𝐴, 𝐵)
𝑃(𝐵) .

• Apply this to n-grams:

𝑃(𝑥𝑡+1 ∣ 𝑥𝑡, … , 𝑥𝑡−𝑛+2) = 𝑃(𝑥𝑡+1, 𝑥𝑡, … , 𝑥𝑡−𝑛+2)
𝑃 (𝑥𝑡, … , 𝑥𝑡−𝑛+2) .

• e.g., the cat is cute

20

n-gram language models: 3. Example (4-gram)

As the proctor started the clock, the students opened their _____

As the proctor started the clock,the students opened their _____

Conditioning only on the last three words:

̂𝑃 (𝑤 ∣ students open their) = count(students open their𝑤)
count(students opened their) .

Suppose in the corpus:

• students opened their occurs 1000 times,
• students opened their books occurs 400 times, so

𝑃(books ∣ students opened their) = 0.4,

• students opened their exams occurs 100 times, so

𝑃(exams ∣ students opened their) = 0.1.

21

n-gram language models: 3. Example (4-gram)

As the proctor started the clock, the students opened their _____

As the proctor started the clock,the students opened their _____

Conditioning only on the last three words:

̂𝑃 (𝑤 ∣ students open their) = count(students open their𝑤)
count(students opened their) .

Suppose in the corpus:

• students opened their occurs 1000 times,
• students opened their books occurs 400 times, so

𝑃(books ∣ students opened their) = 0.4,

• students opened their exams occurs 100 times, so

𝑃(exams ∣ students opened their) = 0.1.

21

n-gram language models: 3. Example (4-gram)

As the proctor started the clock, the students opened their _____

As the proctor started the clock,the students opened their _____

Conditioning only on the last three words:

̂𝑃 (𝑤 ∣ students open their) = count(students open their𝑤)
count(students opened their) .

Suppose in the corpus:

• students opened their occurs 1000 times,
• students opened their books occurs 400 times, so

𝑃(books ∣ students opened their) = 0.4,

• students opened their exams occurs 100 times, so

𝑃(exams ∣ students opened their) = 0.1.

21

n-gram language models: 3. Example (4-gram)

As the proctor started the clock, the students opened their _____

As the proctor started the clock,the students opened their _____

Conditioning only on the last three words:

̂𝑃 (𝑤 ∣ students open their) = count(students open their𝑤)
count(students opened their) .

Suppose in the corpus:

• students opened their occurs 1000 times,
• students opened their books occurs 400 times, so

𝑃(books ∣ students opened their) = 0.4,

• students opened their exams occurs 100 times, so

𝑃(exams ∣ students opened their) = 0.1.

21

n-gram language models: 3. Example (4-gram)

As the proctor started the clock, the students opened their _____

As the proctor started the clock,the students opened their _____

Conditioning only on the last three words:

̂𝑃 (𝑤 ∣ students open their) = count(students open their𝑤)
count(students opened their) .

Suppose in the corpus:

• students opened their occurs 1000 times,
• students opened their books occurs 400 times, so

𝑃(books ∣ students opened their) = 0.4,

• students opened their exams occurs 100 times, so

𝑃(exams ∣ students opened their) = 0.1.

21

n-gram language models: 3. Example (4-gram)

As the proctor started the clock, the students opened their _____

As the proctor started the clock,the students opened their _____

Conditioning only on the last three words:

̂𝑃 (𝑤 ∣ students open their) = count(students open their𝑤)
count(students opened their) .

Suppose in the corpus:

• students opened their occurs 1000 times,
• students opened their books occurs 400 times, so

𝑃(books ∣ students opened their) = 0.4,

• students opened their exams occurs 100 times, so

𝑃(exams ∣ students opened their) = 0.1.

21

Problems with n-gram language models

• Data sparsity: Zero probability if an n-gram never appears

• Storage cost: Must store counts for all observed n-grams (e.g.,
early Google Translator used huge n-gram tables).

• Practical note: Easy to build (e.g., a trigram LM on a million-word
corpus in seconds), but results could be sparse and limited.

• Sparsity worsens as 𝑛 increases (rarely 𝑛 > 5 in practice).

̂𝑃 (𝑤 ∣ today the) = count(today the 𝑤)
count(today the)

22

Problems with n-gram language models

• Data sparsity: Zero probability if an n-gram never appears
• Storage cost: Must store counts for all observed n-grams (e.g.,
early Google Translator used huge n-gram tables).

• Practical note: Easy to build (e.g., a trigram LM on a million-word
corpus in seconds), but results could be sparse and limited.

• Sparsity worsens as 𝑛 increases (rarely 𝑛 > 5 in practice).

̂𝑃 (𝑤 ∣ today the) = count(today the 𝑤)
count(today the)

22

Problems with n-gram language models

• Data sparsity: Zero probability if an n-gram never appears
• Storage cost: Must store counts for all observed n-grams (e.g.,
early Google Translator used huge n-gram tables).

• Practical note: Easy to build (e.g., a trigram LM on a million-word
corpus in seconds), but results could be sparse and limited.

• Sparsity worsens as 𝑛 increases (rarely 𝑛 > 5 in practice).

̂𝑃 (𝑤 ∣ today the) = count(today the 𝑤)
count(today the)

22

Problems with n-gram language models

• Data sparsity: Zero probability if an n-gram never appears
• Storage cost: Must store counts for all observed n-grams (e.g.,
early Google Translator used huge n-gram tables).

• Practical note: Easy to build (e.g., a trigram LM on a million-word
corpus in seconds), but results could be sparse and limited.

• Sparsity worsens as 𝑛 increases (rarely 𝑛 > 5 in practice).
̂𝑃 (𝑤 ∣ today the) = count(today the 𝑤)

count(today the)

22

Window-based neural language
models

Fixed-window neural language models

Idea (Bengio et al., 2000, 2003):

1. Use a small context window of previous words

2. Map each word to an embedding
3. Combine them through a feed-forward network
4. Output a probability distribution for the next word

23

Fixed-window neural language models

Idea (Bengio et al., 2000, 2003):

1. Use a small context window of previous words
2. Map each word to an embedding

3. Combine them through a feed-forward network
4. Output a probability distribution for the next word

23

Fixed-window neural language models

Idea (Bengio et al., 2000, 2003):

1. Use a small context window of previous words
2. Map each word to an embedding
3. Combine them through a feed-forward network

4. Output a probability distribution for the next word

23

Fixed-window neural language models

Idea (Bengio et al., 2000, 2003):

1. Use a small context window of previous words
2. Map each word to an embedding
3. Combine them through a feed-forward network
4. Output a probability distribution for the next word

23

Fixed-window neural language models

24

Fixed-window neural LMs: Pros & Cons

• Advantages over n-gram LMs:

• No sparsity problem (embeddings generalize to unseen
sequences).

• No need to store all n-gram counts.
• Limitations:

• Fixed context window is too small; cannot capture long-range
dependencies

• The students who sat quietly in the large lecture hall were
waiting for the professor. (subject–verb agreement)

• Jane met with Mary after work because she had an important
announcement. (pronoun resolution)

• Enlarging the window makes the weight matrix 𝑊 grow huge.

• Next step: We need architectures that can

1. handle arbitrary-length input,
2. share parameters efficiently,
3. capture sequential order and proximity.

25

Fixed-window neural LMs: Pros & Cons

• Advantages over n-gram LMs:
• No sparsity problem (embeddings generalize to unseen
sequences).

• No need to store all n-gram counts.
• Limitations:

• Fixed context window is too small; cannot capture long-range
dependencies

• The students who sat quietly in the large lecture hall were
waiting for the professor. (subject–verb agreement)

• Jane met with Mary after work because she had an important
announcement. (pronoun resolution)

• Enlarging the window makes the weight matrix 𝑊 grow huge.

• Next step: We need architectures that can

1. handle arbitrary-length input,
2. share parameters efficiently,
3. capture sequential order and proximity.

25

Fixed-window neural LMs: Pros & Cons

• Advantages over n-gram LMs:
• No sparsity problem (embeddings generalize to unseen
sequences).

• No need to store all n-gram counts.

• Limitations:

• Fixed context window is too small; cannot capture long-range
dependencies

• The students who sat quietly in the large lecture hall were
waiting for the professor. (subject–verb agreement)

• Jane met with Mary after work because she had an important
announcement. (pronoun resolution)

• Enlarging the window makes the weight matrix 𝑊 grow huge.

• Next step: We need architectures that can

1. handle arbitrary-length input,
2. share parameters efficiently,
3. capture sequential order and proximity.

25

Fixed-window neural LMs: Pros & Cons

• Advantages over n-gram LMs:
• No sparsity problem (embeddings generalize to unseen
sequences).

• No need to store all n-gram counts.
• Limitations:

• Fixed context window is too small; cannot capture long-range
dependencies

• The students who sat quietly in the large lecture hall were
waiting for the professor. (subject–verb agreement)

• Jane met with Mary after work because she had an important
announcement. (pronoun resolution)

• Enlarging the window makes the weight matrix 𝑊 grow huge.
• Next step: We need architectures that can

1. handle arbitrary-length input,
2. share parameters efficiently,
3. capture sequential order and proximity.

25

Fixed-window neural LMs: Pros & Cons

• Advantages over n-gram LMs:
• No sparsity problem (embeddings generalize to unseen
sequences).

• No need to store all n-gram counts.
• Limitations:

• Fixed context window is too small; cannot capture long-range
dependencies

• The students who sat quietly in the large lecture hall were
waiting for the professor. (subject–verb agreement)

• Jane met with Mary after work because she had an important
announcement. (pronoun resolution)

• Enlarging the window makes the weight matrix 𝑊 grow huge.
• Next step: We need architectures that can

1. handle arbitrary-length input,
2. share parameters efficiently,
3. capture sequential order and proximity.

25

Fixed-window neural LMs: Pros & Cons

• Advantages over n-gram LMs:
• No sparsity problem (embeddings generalize to unseen
sequences).

• No need to store all n-gram counts.
• Limitations:

• Fixed context window is too small; cannot capture long-range
dependencies

• The students who sat quietly in the large lecture hall were
waiting for the professor. (subject–verb agreement)

• Jane met with Mary after work because she had an important
announcement. (pronoun resolution)

• Enlarging the window makes the weight matrix 𝑊 grow huge.
• Next step: We need architectures that can

1. handle arbitrary-length input,
2. share parameters efficiently,
3. capture sequential order and proximity.

25

Fixed-window neural LMs: Pros & Cons

• Advantages over n-gram LMs:
• No sparsity problem (embeddings generalize to unseen
sequences).

• No need to store all n-gram counts.
• Limitations:

• Fixed context window is too small; cannot capture long-range
dependencies

• The students who sat quietly in the large lecture hall were
waiting for the professor. (subject–verb agreement)

• Jane met with Mary after work because she had an important
announcement. (pronoun resolution)

• Enlarging the window makes the weight matrix 𝑊 grow huge.
• Next step: We need architectures that can

1. handle arbitrary-length input,
2. share parameters efficiently,
3. capture sequential order and proximity.

25

Fixed-window neural LMs: Pros & Cons

• Advantages over n-gram LMs:
• No sparsity problem (embeddings generalize to unseen
sequences).

• No need to store all n-gram counts.
• Limitations:

• Fixed context window is too small; cannot capture long-range
dependencies

• The students who sat quietly in the large lecture hall were
waiting for the professor. (subject–verb agreement)

• Jane met with Mary after work because she had an important
announcement. (pronoun resolution)

• Enlarging the window makes the weight matrix 𝑊 grow huge.

• Next step: We need architectures that can

1. handle arbitrary-length input,
2. share parameters efficiently,
3. capture sequential order and proximity.

25

Fixed-window neural LMs: Pros & Cons

• Advantages over n-gram LMs:
• No sparsity problem (embeddings generalize to unseen
sequences).

• No need to store all n-gram counts.
• Limitations:

• Fixed context window is too small; cannot capture long-range
dependencies

• The students who sat quietly in the large lecture hall were
waiting for the professor. (subject–verb agreement)

• Jane met with Mary after work because she had an important
announcement. (pronoun resolution)

• Enlarging the window makes the weight matrix 𝑊 grow huge.
• Next step: We need architectures that can

1. handle arbitrary-length input,
2. share parameters efficiently,
3. capture sequential order and proximity.

25

Fixed-window neural LMs: Pros & Cons

• Advantages over n-gram LMs:
• No sparsity problem (embeddings generalize to unseen
sequences).

• No need to store all n-gram counts.
• Limitations:

• Fixed context window is too small; cannot capture long-range
dependencies

• The students who sat quietly in the large lecture hall were
waiting for the professor. (subject–verb agreement)

• Jane met with Mary after work because she had an important
announcement. (pronoun resolution)

• Enlarging the window makes the weight matrix 𝑊 grow huge.
• Next step: We need architectures that can

1. handle arbitrary-length input,

2. share parameters efficiently,
3. capture sequential order and proximity.

25

Fixed-window neural LMs: Pros & Cons

• Advantages over n-gram LMs:
• No sparsity problem (embeddings generalize to unseen
sequences).

• No need to store all n-gram counts.
• Limitations:

• Fixed context window is too small; cannot capture long-range
dependencies

• The students who sat quietly in the large lecture hall were
waiting for the professor. (subject–verb agreement)

• Jane met with Mary after work because she had an important
announcement. (pronoun resolution)

• Enlarging the window makes the weight matrix 𝑊 grow huge.
• Next step: We need architectures that can

1. handle arbitrary-length input,
2. share parameters efficiently,

3. capture sequential order and proximity.

25

Fixed-window neural LMs: Pros & Cons

• Advantages over n-gram LMs:
• No sparsity problem (embeddings generalize to unseen
sequences).

• No need to store all n-gram counts.
• Limitations:

• Fixed context window is too small; cannot capture long-range
dependencies

• The students who sat quietly in the large lecture hall were
waiting for the professor. (subject–verb agreement)

• Jane met with Mary after work because she had an important
announcement. (pronoun resolution)

• Enlarging the window makes the weight matrix 𝑊 grow huge.
• Next step: We need architectures that can

1. handle arbitrary-length input,
2. share parameters efficiently,
3. capture sequential order and proximity.

25

RNNs

Overview

RNNs are widely used to process continuous data such as time series.

26

They work by retaining past information while processing new input.

27

For example, changes in stock prices.

28

Or sequences like words in a sentence.

29

Or sequences like words in a sentence.

30

Or sequences like words in a sentence.

31

Or sequences like words in a sentence.

32

Or sequences like words in a sentence.

33

Or sequences like words in a sentence.

34

Or sequences like words in a sentence.

35

Or sequences like words in a sentence.

36

RNNs can effectively handle data where order matters.

37

Think of RNNs as learning by extracting temporal features from
time-series data.

38

Moreover, RNNs evolved into LSTMs

39

Moreover, RNNs evolved into LSTMs and eventually into Transformers.

40

We will discuss (1) the structure, (2) the algorithms for learning
sequential information, and (3) the uses of RNNs.

41

1. Structure

The structure of an RNN is simpler than you might think.

42

The structure of an RNN is simpler than you might think.

43

What an RNN does is to take an input vector 𝑥,

44

perform internal computations,

45

and produce an output vector ̂𝑦.

46

This is the feedforward process of the RNN.

47

The types of input vectors 𝑥 and output vectors ̂𝑦 can vary widely.

48

Time-series data (e.g., characters, stock price graphs, musical notes),
as long as it can be represented sequentially, can be used as input.

49

So, what is the benefit of processing sequential data?

50

For example, let’s assume this RNN is a model that translates English
into Spanish.

51

Suppose it encounters the word bat in English.

52

It has two possible meanings: a baseball bat or a flying bat.

53

It has two possible meanings: a baseball bat or a flying bat.

54

However, if the previous word is baseball,

55

then with high probability, bat will be translated as bate in Spanish.

56

When translating baseball,

57

When translating baseball,

58

the internal state ℎ is set with the processed representation of
baseball.

59

Through this internal computation, baseball is translated into
béisbol,

60

and when the model later encounters bat,

61

the hidden state created while translating baseball

62

influences how bat is translated – this is the core idea of an RNN.

63

The hidden state ℎ gets updated to combine the context of both
baseball and bat,

64

and thus, the probability of translating bat as bate (bat for baseball)
becomes much higher than translating it as murciélago (the animal).

65

and thus, the probability of translating bat as bate (bat for baseball)
becomes much higher than translating it as murciélago (the animal).

66

And thus, the probability of translating bat as bate (bat for baseball)
becomes much higher than translating it as murciélago (the animal).

67

And thus, the probability of translating bat as bate (bat for baseball)
becomes much higher than translating it as murciélago (the animal).

68

2. Algorithm/Training

• Idea: Repeatedly apply the same weight matrix 𝑊 at each time
step

• Maintain a hidden state over time, feeding it back into the
network to capture temporal dependencies

69

2-1. The Simple RNN language model

70

2-2. Training an RNN Language Model

1. Start with a large text corpus, represented as a sequence of
words 𝑤1, … , 𝑤𝑇 −1, 𝑤𝑇 .

2. Feed this sequence into the RNN-based language model.
3. At each time step 𝑡, the model outputs a probability distribution

ŷ𝑡 over the vocabulary.

• Internally, the RNN updates its hidden state h𝑡, then applies a
linear layer followed by softmax:

ŷ𝑡 = softmax(𝑊𝑜 h𝑡 + 𝑏𝑜).

• Each component of ŷ𝑡 corresponds to

𝑃(𝑤𝑡+1 = 𝑣𝑖 ∣ 𝑤1, … , 𝑤𝑡),

i.e., the probability that the next word is 𝑣𝑖.
• Put simply, at every step 𝑡, the model predicts the likelihood of
each possible next word given all preceding words

• autoregressive, causal LM generation

71

2-2. Training an RNN Language Model

1. Start with a large text corpus, represented as a sequence of
words 𝑤1, … , 𝑤𝑇 −1, 𝑤𝑇 .

2. Feed this sequence into the RNN-based language model.

3. At each time step 𝑡, the model outputs a probability distribution
ŷ𝑡 over the vocabulary.

• Internally, the RNN updates its hidden state h𝑡, then applies a
linear layer followed by softmax:

ŷ𝑡 = softmax(𝑊𝑜 h𝑡 + 𝑏𝑜).

• Each component of ŷ𝑡 corresponds to

𝑃(𝑤𝑡+1 = 𝑣𝑖 ∣ 𝑤1, … , 𝑤𝑡),

i.e., the probability that the next word is 𝑣𝑖.
• Put simply, at every step 𝑡, the model predicts the likelihood of
each possible next word given all preceding words

• autoregressive, causal LM generation

71

2-2. Training an RNN Language Model

1. Start with a large text corpus, represented as a sequence of
words 𝑤1, … , 𝑤𝑇 −1, 𝑤𝑇 .

2. Feed this sequence into the RNN-based language model.
3. At each time step 𝑡, the model outputs a probability distribution

ŷ𝑡 over the vocabulary.

• Internally, the RNN updates its hidden state h𝑡, then applies a
linear layer followed by softmax:

ŷ𝑡 = softmax(𝑊𝑜 h𝑡 + 𝑏𝑜).

• Each component of ŷ𝑡 corresponds to

𝑃(𝑤𝑡+1 = 𝑣𝑖 ∣ 𝑤1, … , 𝑤𝑡),

i.e., the probability that the next word is 𝑣𝑖.
• Put simply, at every step 𝑡, the model predicts the likelihood of
each possible next word given all preceding words

• autoregressive, causal LM generation

71

2-2. Training an RNN Language Model

1. Start with a large text corpus, represented as a sequence of
words 𝑤1, … , 𝑤𝑇 −1, 𝑤𝑇 .

2. Feed this sequence into the RNN-based language model.
3. At each time step 𝑡, the model outputs a probability distribution

ŷ𝑡 over the vocabulary.
• Internally, the RNN updates its hidden state h𝑡, then applies a
linear layer followed by softmax:

ŷ𝑡 = softmax(𝑊𝑜 h𝑡 + 𝑏𝑜).

• Each component of ŷ𝑡 corresponds to

𝑃(𝑤𝑡+1 = 𝑣𝑖 ∣ 𝑤1, … , 𝑤𝑡),

i.e., the probability that the next word is 𝑣𝑖.
• Put simply, at every step 𝑡, the model predicts the likelihood of
each possible next word given all preceding words

• autoregressive, causal LM generation

71

2-2. Training an RNN Language Model

1. Start with a large text corpus, represented as a sequence of
words 𝑤1, … , 𝑤𝑇 −1, 𝑤𝑇 .

2. Feed this sequence into the RNN-based language model.
3. At each time step 𝑡, the model outputs a probability distribution

ŷ𝑡 over the vocabulary.
• Internally, the RNN updates its hidden state h𝑡, then applies a
linear layer followed by softmax:

ŷ𝑡 = softmax(𝑊𝑜 h𝑡 + 𝑏𝑜).

• Each component of ŷ𝑡 corresponds to

𝑃(𝑤𝑡+1 = 𝑣𝑖 ∣ 𝑤1, … , 𝑤𝑡),

i.e., the probability that the next word is 𝑣𝑖.

• Put simply, at every step 𝑡, the model predicts the likelihood of
each possible next word given all preceding words

• autoregressive, causal LM generation

71

2-2. Training an RNN Language Model

1. Start with a large text corpus, represented as a sequence of
words 𝑤1, … , 𝑤𝑇 −1, 𝑤𝑇 .

2. Feed this sequence into the RNN-based language model.
3. At each time step 𝑡, the model outputs a probability distribution

ŷ𝑡 over the vocabulary.
• Internally, the RNN updates its hidden state h𝑡, then applies a
linear layer followed by softmax:

ŷ𝑡 = softmax(𝑊𝑜 h𝑡 + 𝑏𝑜).

• Each component of ŷ𝑡 corresponds to

𝑃(𝑤𝑡+1 = 𝑣𝑖 ∣ 𝑤1, … , 𝑤𝑡),

i.e., the probability that the next word is 𝑣𝑖.
• Put simply, at every step 𝑡, the model predicts the likelihood of
each possible next word given all preceding words

• autoregressive, causal LM generation

71

2-2. Training an RNN Language Model

1. Start with a large text corpus, represented as a sequence of
words 𝑤1, … , 𝑤𝑇 −1, 𝑤𝑇 .

2. Feed this sequence into the RNN-based language model.
3. At each time step 𝑡, the model outputs a probability distribution

ŷ𝑡 over the vocabulary.
• Internally, the RNN updates its hidden state h𝑡, then applies a
linear layer followed by softmax:

ŷ𝑡 = softmax(𝑊𝑜 h𝑡 + 𝑏𝑜).

• Each component of ŷ𝑡 corresponds to

𝑃(𝑤𝑡+1 = 𝑣𝑖 ∣ 𝑤1, … , 𝑤𝑡),

i.e., the probability that the next word is 𝑣𝑖.
• Put simply, at every step 𝑡, the model predicts the likelihood of
each possible next word given all preceding words

• autoregressive, causal LM generation

71

• Loss at step 𝑡:

𝒥(𝑡) = −
|𝑉 |
∑
𝑖=1

𝑦(𝑡)
𝑖 log ̂𝑦(𝑡)

𝑖 = − log ̂𝑦(𝑡)
𝑤𝑡+1 ,

where:
• 𝑦(𝑡): one-hot vector for the true next word 𝑤𝑡+1.
• ̂𝑦(𝑡): predicted probability distribution over the vocabulary from
the softmax layer.

• This is the cross-entropy loss between the predicted distribution
and the true label.

72

Example: Why one-hot vectors in the loss?

• Vocabulary: {apple, banana, orange} (|𝑉 | = 3)

• Model prediction (softmax output at step 𝑡):
̂𝑦(𝑡) = [0.2, 0.7, 0.1]

• True next word: apple

𝑦(𝑡) = [1, 0, 0] (one-hot vector)

• Cross-entropy loss:

𝒥(𝑡) = −
3

∑
𝑖=1

𝑦(𝑡)
𝑖 log ̂𝑦(𝑡)

𝑖 = − log ̂𝑦(𝑡)
apple = − log 0.2 ≈ 1.609

• A one-hot vector marks the position of the true word in the
vocabulary.

• In cross-entropy, this ensures the loss only depends on the
probability of the true word.

• Compare: Higher probability for the correct word ⇒ lower loss.
• Example: if ̂𝑦apple = 0.9, then loss = − log 0.9 ≈ 0.105.

73

Example: Why one-hot vectors in the loss?

• Vocabulary: {apple, banana, orange} (|𝑉 | = 3)
• Model prediction (softmax output at step 𝑡):

̂𝑦(𝑡) = [0.2, 0.7, 0.1]

• True next word: apple

𝑦(𝑡) = [1, 0, 0] (one-hot vector)

• Cross-entropy loss:

𝒥(𝑡) = −
3

∑
𝑖=1

𝑦(𝑡)
𝑖 log ̂𝑦(𝑡)

𝑖 = − log ̂𝑦(𝑡)
apple = − log 0.2 ≈ 1.609

• A one-hot vector marks the position of the true word in the
vocabulary.

• In cross-entropy, this ensures the loss only depends on the
probability of the true word.

• Compare: Higher probability for the correct word ⇒ lower loss.
• Example: if ̂𝑦apple = 0.9, then loss = − log 0.9 ≈ 0.105.

73

Example: Why one-hot vectors in the loss?

• Vocabulary: {apple, banana, orange} (|𝑉 | = 3)
• Model prediction (softmax output at step 𝑡):

̂𝑦(𝑡) = [0.2, 0.7, 0.1]
• True next word: apple

𝑦(𝑡) = [1, 0, 0] (one-hot vector)

• Cross-entropy loss:

𝒥(𝑡) = −
3

∑
𝑖=1

𝑦(𝑡)
𝑖 log ̂𝑦(𝑡)

𝑖 = − log ̂𝑦(𝑡)
apple = − log 0.2 ≈ 1.609

• A one-hot vector marks the position of the true word in the
vocabulary.

• In cross-entropy, this ensures the loss only depends on the
probability of the true word.

• Compare: Higher probability for the correct word ⇒ lower loss.
• Example: if ̂𝑦apple = 0.9, then loss = − log 0.9 ≈ 0.105.

73

Example: Why one-hot vectors in the loss?

• Vocabulary: {apple, banana, orange} (|𝑉 | = 3)
• Model prediction (softmax output at step 𝑡):

̂𝑦(𝑡) = [0.2, 0.7, 0.1]
• True next word: apple

𝑦(𝑡) = [1, 0, 0] (one-hot vector)

• Cross-entropy loss:

𝒥(𝑡) = −
3

∑
𝑖=1

𝑦(𝑡)
𝑖 log ̂𝑦(𝑡)

𝑖 = − log ̂𝑦(𝑡)
apple = − log 0.2 ≈ 1.609

• A one-hot vector marks the position of the true word in the
vocabulary.

• In cross-entropy, this ensures the loss only depends on the
probability of the true word.

• Compare: Higher probability for the correct word ⇒ lower loss.
• Example: if ̂𝑦apple = 0.9, then loss = − log 0.9 ≈ 0.105.

73

Example: Why one-hot vectors in the loss?

• Vocabulary: {apple, banana, orange} (|𝑉 | = 3)
• Model prediction (softmax output at step 𝑡):

̂𝑦(𝑡) = [0.2, 0.7, 0.1]
• True next word: apple

𝑦(𝑡) = [1, 0, 0] (one-hot vector)

• Cross-entropy loss:

𝒥(𝑡) = −
3

∑
𝑖=1

𝑦(𝑡)
𝑖 log ̂𝑦(𝑡)

𝑖 = − log ̂𝑦(𝑡)
apple = − log 0.2 ≈ 1.609

• A one-hot vector marks the position of the true word in the
vocabulary.

• In cross-entropy, this ensures the loss only depends on the
probability of the true word.

• Compare: Higher probability for the correct word ⇒ lower loss.
• Example: if ̂𝑦apple = 0.9, then loss = − log 0.9 ≈ 0.105.

73

Example: Why one-hot vectors in the loss?

• Vocabulary: {apple, banana, orange} (|𝑉 | = 3)
• Model prediction (softmax output at step 𝑡):

̂𝑦(𝑡) = [0.2, 0.7, 0.1]
• True next word: apple

𝑦(𝑡) = [1, 0, 0] (one-hot vector)

• Cross-entropy loss:

𝒥(𝑡) = −
3

∑
𝑖=1

𝑦(𝑡)
𝑖 log ̂𝑦(𝑡)

𝑖 = − log ̂𝑦(𝑡)
apple = − log 0.2 ≈ 1.609

• A one-hot vector marks the position of the true word in the
vocabulary.

• In cross-entropy, this ensures the loss only depends on the
probability of the true word.

• Compare: Higher probability for the correct word ⇒ lower loss.
• Example: if ̂𝑦apple = 0.9, then loss = − log 0.9 ≈ 0.105.

73

Example: Why one-hot vectors in the loss?

• Vocabulary: {apple, banana, orange} (|𝑉 | = 3)
• Model prediction (softmax output at step 𝑡):

̂𝑦(𝑡) = [0.2, 0.7, 0.1]
• True next word: apple

𝑦(𝑡) = [1, 0, 0] (one-hot vector)

• Cross-entropy loss:

𝒥(𝑡) = −
3

∑
𝑖=1

𝑦(𝑡)
𝑖 log ̂𝑦(𝑡)

𝑖 = − log ̂𝑦(𝑡)
apple = − log 0.2 ≈ 1.609

• A one-hot vector marks the position of the true word in the
vocabulary.

• In cross-entropy, this ensures the loss only depends on the
probability of the true word.

• Compare: Higher probability for the correct word ⇒ lower loss.

• Example: if ̂𝑦apple = 0.9, then loss = − log 0.9 ≈ 0.105.

73

Example: Why one-hot vectors in the loss?

• Vocabulary: {apple, banana, orange} (|𝑉 | = 3)
• Model prediction (softmax output at step 𝑡):

̂𝑦(𝑡) = [0.2, 0.7, 0.1]
• True next word: apple

𝑦(𝑡) = [1, 0, 0] (one-hot vector)

• Cross-entropy loss:

𝒥(𝑡) = −
3

∑
𝑖=1

𝑦(𝑡)
𝑖 log ̂𝑦(𝑡)

𝑖 = − log ̂𝑦(𝑡)
apple = − log 0.2 ≈ 1.609

• A one-hot vector marks the position of the true word in the
vocabulary.

• In cross-entropy, this ensures the loss only depends on the
probability of the true word.

• Compare: Higher probability for the correct word ⇒ lower loss.
• Example: if ̂𝑦apple = 0.9, then loss = − log 0.9 ≈ 0.105.

73

74

• Overall (average) loss over the sequence:

𝒥(𝜃) = 1
𝑇

𝑇
∑
𝑡=1

𝒥(𝑡)(𝜃)

• Sum the losses across all time steps.
• Divide by the sequence length 𝑇 to normalize for varying
sequence lengths.

• This gives the average negative log-likelihood per word, the main
training objective of the RNN language model.

75

2-3. Training in practice

• However, computing the loss and gradients over the entire
corpus 𝑥1, … , 𝑥𝑇 is prohibitively expensive.

• In practice, we split the corpus into smaller units (e.g., individual
sentences or documents).

• Recall: Stochastic Gradient Descent (SGD) computes the loss
(using cross‐entropy) and gradients on a small batch of data,
then updates the model parameters.

• Concretely, for each batch of sentences, we

1. compute the batch loss 𝒥(𝜃),
2. compute the gradient ∇𝜃 𝒥(𝜃),
3. update 𝜃 ← 𝜃 − 𝜂 ∇𝜃 𝒥(𝜃),
4. and repeat.

76

2-3. Training in practice

• However, computing the loss and gradients over the entire
corpus 𝑥1, … , 𝑥𝑇 is prohibitively expensive.

• In practice, we split the corpus into smaller units (e.g., individual
sentences or documents).

• Recall: Stochastic Gradient Descent (SGD) computes the loss
(using cross‐entropy) and gradients on a small batch of data,
then updates the model parameters.

• Concretely, for each batch of sentences, we

1. compute the batch loss 𝒥(𝜃),
2. compute the gradient ∇𝜃 𝒥(𝜃),
3. update 𝜃 ← 𝜃 − 𝜂 ∇𝜃 𝒥(𝜃),
4. and repeat.

76

2-3. Training in practice

• However, computing the loss and gradients over the entire
corpus 𝑥1, … , 𝑥𝑇 is prohibitively expensive.

• In practice, we split the corpus into smaller units (e.g., individual
sentences or documents).

• Recall: Stochastic Gradient Descent (SGD) computes the loss
(using cross‐entropy) and gradients on a small batch of data,
then updates the model parameters.

• Concretely, for each batch of sentences, we

1. compute the batch loss 𝒥(𝜃),
2. compute the gradient ∇𝜃 𝒥(𝜃),
3. update 𝜃 ← 𝜃 − 𝜂 ∇𝜃 𝒥(𝜃),
4. and repeat.

76

2-3. Training in practice

• However, computing the loss and gradients over the entire
corpus 𝑥1, … , 𝑥𝑇 is prohibitively expensive.

• In practice, we split the corpus into smaller units (e.g., individual
sentences or documents).

• Recall: Stochastic Gradient Descent (SGD) computes the loss
(using cross‐entropy) and gradients on a small batch of data,
then updates the model parameters.

• Concretely, for each batch of sentences, we

1. compute the batch loss 𝒥(𝜃),
2. compute the gradient ∇𝜃 𝒥(𝜃),
3. update 𝜃 ← 𝜃 − 𝜂 ∇𝜃 𝒥(𝜃),
4. and repeat.

76

2-3. Training in practice

• However, computing the loss and gradients over the entire
corpus 𝑥1, … , 𝑥𝑇 is prohibitively expensive.

• In practice, we split the corpus into smaller units (e.g., individual
sentences or documents).

• Recall: Stochastic Gradient Descent (SGD) computes the loss
(using cross‐entropy) and gradients on a small batch of data,
then updates the model parameters.

• Concretely, for each batch of sentences, we
1. compute the batch loss 𝒥(𝜃),

2. compute the gradient ∇𝜃 𝒥(𝜃),
3. update 𝜃 ← 𝜃 − 𝜂 ∇𝜃 𝒥(𝜃),
4. and repeat.

76

2-3. Training in practice

• However, computing the loss and gradients over the entire
corpus 𝑥1, … , 𝑥𝑇 is prohibitively expensive.

• In practice, we split the corpus into smaller units (e.g., individual
sentences or documents).

• Recall: Stochastic Gradient Descent (SGD) computes the loss
(using cross‐entropy) and gradients on a small batch of data,
then updates the model parameters.

• Concretely, for each batch of sentences, we
1. compute the batch loss 𝒥(𝜃),
2. compute the gradient ∇𝜃 𝒥(𝜃),

3. update 𝜃 ← 𝜃 − 𝜂 ∇𝜃 𝒥(𝜃),
4. and repeat.

76

2-3. Training in practice

• However, computing the loss and gradients over the entire
corpus 𝑥1, … , 𝑥𝑇 is prohibitively expensive.

• In practice, we split the corpus into smaller units (e.g., individual
sentences or documents).

• Recall: Stochastic Gradient Descent (SGD) computes the loss
(using cross‐entropy) and gradients on a small batch of data,
then updates the model parameters.

• Concretely, for each batch of sentences, we
1. compute the batch loss 𝒥(𝜃),
2. compute the gradient ∇𝜃 𝒥(𝜃),
3. update 𝜃 ← 𝜃 − 𝜂 ∇𝜃 𝒥(𝜃),

4. and repeat.

76

2-3. Training in practice

• However, computing the loss and gradients over the entire
corpus 𝑥1, … , 𝑥𝑇 is prohibitively expensive.

• In practice, we split the corpus into smaller units (e.g., individual
sentences or documents).

• Recall: Stochastic Gradient Descent (SGD) computes the loss
(using cross‐entropy) and gradients on a small batch of data,
then updates the model parameters.

• Concretely, for each batch of sentences, we
1. compute the batch loss 𝒥(𝜃),
2. compute the gradient ∇𝜃 𝒥(𝜃),
3. update 𝜃 ← 𝜃 − 𝜂 ∇𝜃 𝒥(𝜃),
4. and repeat.

76

2-4. Training: Backpropagation

• The loss 𝐽 (𝑡)(𝜃) depends on the shared weight matrix 𝑊ℎ at
every time step.

• Therefore,
𝜕𝐽 (𝑡)

𝜕𝑊ℎ
=

𝑡
∑
𝑘=1

𝜕𝐽 (𝑡)

𝜕𝑊 (𝑘)
ℎ

.

• In other words, the gradient w.r.t. the repeated parameter is the
sum of its contributions over all time steps.

• Why? Because the RNN “unrolls” in time but reuses the same
𝑊ℎ at each step (parameter sharing). 77

2-4. Training: Backpropagation

78

2-5. Application: Generating text

Just like an n-gram language model, you can use an RNN model to
generate text by repeated sampling. The sampled output becomes
the next step’s input.

79

Just like an n-gram language model, you can use an RNN model to
generate text by repeated sampling. The sampled output becomes
the next step’s input.

Example
• Start token: <S>
• Step 1: Model predicts distribution, sample my
• Step 2: Input = my, sample favorite
• Step 3: Input = favorite, sample season
• Step 4: Input = season, sample is
• Step 5: Input = is, sample spring

⇒ “my favorite season is spring”

80

81

2-6. Evaluation: Perplexity

• The most common evaluation metric for language models is
perplexity.

Perplexity(𝑤1∶𝑇) = 𝑃(𝑤1∶𝑇)− 1
𝑇 = exp(− 1

𝑇

𝑇
∑
𝑡=1

log 𝑃(𝑤𝑡 ∣ 𝑤1∶𝑡−1))

• Definition: Exponential of the average cross-entropy loss.
• Intuition:

• Measures how “surprised” the model is when predicting the test
data.

• Equivalent to the model’s effective average branching factor (i.e.,
how many plausible next words it considers at each step).

• Interpretation: Lower perplexity ⇒ model is less “perplexed”
and makes more accurate predictions.

https://github.com/asahi417/lmppl
https://github.com/Picovoice/llm-compression-benchmark

82

https://github.com/asahi417/lmppl
https://github.com/Picovoice/llm-compression-benchmark

2-6. Evaluation: Perplexity

• The most common evaluation metric for language models is
perplexity.

Perplexity(𝑤1∶𝑇) = 𝑃(𝑤1∶𝑇)− 1
𝑇 = exp(− 1

𝑇

𝑇
∑
𝑡=1

log 𝑃(𝑤𝑡 ∣ 𝑤1∶𝑡−1))

• Definition: Exponential of the average cross-entropy loss.

• Intuition:

• Measures how “surprised” the model is when predicting the test
data.

• Equivalent to the model’s effective average branching factor (i.e.,
how many plausible next words it considers at each step).

• Interpretation: Lower perplexity ⇒ model is less “perplexed”
and makes more accurate predictions.

https://github.com/asahi417/lmppl
https://github.com/Picovoice/llm-compression-benchmark

82

https://github.com/asahi417/lmppl
https://github.com/Picovoice/llm-compression-benchmark

2-6. Evaluation: Perplexity

• The most common evaluation metric for language models is
perplexity.

Perplexity(𝑤1∶𝑇) = 𝑃(𝑤1∶𝑇)− 1
𝑇 = exp(− 1

𝑇

𝑇
∑
𝑡=1

log 𝑃(𝑤𝑡 ∣ 𝑤1∶𝑡−1))

• Definition: Exponential of the average cross-entropy loss.
• Intuition:

• Measures how “surprised” the model is when predicting the test
data.

• Equivalent to the model’s effective average branching factor (i.e.,
how many plausible next words it considers at each step).

• Interpretation: Lower perplexity ⇒ model is less “perplexed”
and makes more accurate predictions.

https://github.com/asahi417/lmppl
https://github.com/Picovoice/llm-compression-benchmark

82

https://github.com/asahi417/lmppl
https://github.com/Picovoice/llm-compression-benchmark

2-6. Evaluation: Perplexity

• The most common evaluation metric for language models is
perplexity.

Perplexity(𝑤1∶𝑇) = 𝑃(𝑤1∶𝑇)− 1
𝑇 = exp(− 1

𝑇

𝑇
∑
𝑡=1

log 𝑃(𝑤𝑡 ∣ 𝑤1∶𝑡−1))

• Definition: Exponential of the average cross-entropy loss.
• Intuition:

• Measures how “surprised” the model is when predicting the test
data.

• Equivalent to the model’s effective average branching factor (i.e.,
how many plausible next words it considers at each step).

• Interpretation: Lower perplexity ⇒ model is less “perplexed”
and makes more accurate predictions.

https://github.com/asahi417/lmppl
https://github.com/Picovoice/llm-compression-benchmark

82

https://github.com/asahi417/lmppl
https://github.com/Picovoice/llm-compression-benchmark

2-6. Evaluation: Perplexity

• The most common evaluation metric for language models is
perplexity.

Perplexity(𝑤1∶𝑇) = 𝑃(𝑤1∶𝑇)− 1
𝑇 = exp(− 1

𝑇

𝑇
∑
𝑡=1

log 𝑃(𝑤𝑡 ∣ 𝑤1∶𝑡−1))

• Definition: Exponential of the average cross-entropy loss.
• Intuition:

• Measures how “surprised” the model is when predicting the test
data.

• Equivalent to the model’s effective average branching factor (i.e.,
how many plausible next words it considers at each step).

• Interpretation: Lower perplexity ⇒ model is less “perplexed”
and makes more accurate predictions.

https://github.com/asahi417/lmppl
https://github.com/Picovoice/llm-compression-benchmark

82

https://github.com/asahi417/lmppl
https://github.com/Picovoice/llm-compression-benchmark

2-6. Evaluation: Perplexity

• The most common evaluation metric for language models is
perplexity.

Perplexity(𝑤1∶𝑇) = 𝑃(𝑤1∶𝑇)− 1
𝑇 = exp(− 1

𝑇

𝑇
∑
𝑡=1

log 𝑃(𝑤𝑡 ∣ 𝑤1∶𝑡−1))

• Definition: Exponential of the average cross-entropy loss.
• Intuition:

• Measures how “surprised” the model is when predicting the test
data.

• Equivalent to the model’s effective average branching factor (i.e.,
how many plausible next words it considers at each step).

• Interpretation: Lower perplexity ⇒ model is less “perplexed”
and makes more accurate predictions.

https://github.com/asahi417/lmppl
https://github.com/Picovoice/llm-compression-benchmark

82

https://github.com/asahi417/lmppl
https://github.com/Picovoice/llm-compression-benchmark

2-7. Other uses: Sequence tagging

e.g., part-of-speech tagging, named-entity recognition

83

e.g., sentiment classification

84

e.g., question answering, machine translation

85

e.g., speech recognition, machine translation, summarization

86

Wrap-up

Wrap-up

• Language modeling: A system that predicts the next word

• n-gram language models
• Window-based neural language models
• RNNs

• time series data
• structure
• loss function
• evaluation
• applications

87

Wrap-up

• Language modeling: A system that predicts the next word
• n-gram language models

• Window-based neural language models
• RNNs

• time series data
• structure
• loss function
• evaluation
• applications

87

Wrap-up

• Language modeling: A system that predicts the next word
• n-gram language models
• Window-based neural language models

• RNNs

• time series data
• structure
• loss function
• evaluation
• applications

87

Wrap-up

• Language modeling: A system that predicts the next word
• n-gram language models
• Window-based neural language models
• RNNs

• time series data
• structure
• loss function
• evaluation
• applications

87

Wrap-up

• Language modeling: A system that predicts the next word
• n-gram language models
• Window-based neural language models
• RNNs

• time series data

• structure
• loss function
• evaluation
• applications

87

Wrap-up

• Language modeling: A system that predicts the next word
• n-gram language models
• Window-based neural language models
• RNNs

• time series data
• structure

• loss function
• evaluation
• applications

87

Wrap-up

• Language modeling: A system that predicts the next word
• n-gram language models
• Window-based neural language models
• RNNs

• time series data
• structure
• loss function

• evaluation
• applications

87

Wrap-up

• Language modeling: A system that predicts the next word
• n-gram language models
• Window-based neural language models
• RNNs

• time series data
• structure
• loss function
• evaluation

• applications

87

Wrap-up

• Language modeling: A system that predicts the next word
• n-gram language models
• Window-based neural language models
• RNNs

• time series data
• structure
• loss function
• evaluation
• applications

87

	Review
	Lesson plan
	Language modeling
	n-gram language models
	Window-based neural language models
	RNNs
	Wrap-up

