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Review



Review

• Syntactic structure: Consistency and dependency
• Dependency grammar and treebanks
• Dependency parsing
• Transition-based dependency parsing
• Neural dependency parsing
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Review: Dependency grammar vs. Constituency parsing
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Review: Universal dependency grammar

Sourced from De Marneffe, M. C., & Nivre, J. (2019). Dependency grammar. Annual Review of Linguistics, 5(1), 197-218. Figure 4

“UD gives priority to dependency relations between content words,
while function words are attached to the content word.”
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Review: Universal dependency grammar

Sourced from De Marneffe, M. C., & Nivre, J. (2019). Dependency grammar. Annual Review of Linguistics, 5(1), 197-218. Figure 6

“The goal is to support multilingual research in NLP and linguistics
by enabling sound comparative evaluation across languages.”
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Review: Terminology

• treebank
• UAS vs. LAS
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Greedy transition-based parsing: Example

Sentence: I saw him

Initial State: Stack = [ROOT], Buffer = [I, saw, him], Arcs = {}

Step Stack Buffer Transition New Arc
1 [ROOT] [I, saw, him] SHIFT —
2 [ROOT, I] [saw, him] SHIFT —
3 [ROOT, I, saw] [him] LEFT-ARC saw → I (subj)
4 [ROOT, saw] [him] SHIFT —
5 [ROOT, saw, him] [ ] RIGHT-ARC saw → him (obj)
6 [ROOT, saw] [ ] RIGHT-ARC ROOT → saw (root)
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Choosing the next parsing action

How should we decide the next parsing action?

• Parsing hoice depends on the parsing algorithm:

• Greedy methods (Nivre, 2003)
• Beam search (Nivre & Hall, 2005)
• Neural approaches (Chen & Manning, 2014)
• Graph-based Biaffine approaches (Dozat & Manning, 2017)
• Current SOTA: Pre-trained transformers + graph-based biaffine
decoders?
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Thursday Lab

We’ll continue working on building/training a dependency parser;
I’ve updated the dataset.
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Lesson plan



Lesson plan

• Language modeling
• n-gram language models
• Window-based neural language models
• RNNs
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Language modeling



Language modeling

• Language modeling is the task of predicting the next word in a
sequence.

• Example:

the students opened their ____
{books, laptops, exams, minds}

• Formally, given a sequence 𝑥1, 𝑥2, … , 𝑥𝑡, we estimate

𝑃(𝑥𝑡+1 ∣ 𝑥1, 𝑥2, … , 𝑥𝑡).

• Here each 𝑥𝑖 (and the predicted 𝑥𝑡+1) is drawn from a vocabulary

𝒱 = { 𝑤1, 𝑤2, … , 𝑤|𝒱|}.

The symbol 𝑤𝑗 denotes the 𝑗-th word in 𝒱.
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Language modeling

• A language model can also be viewed as a system that assigns a
probability to an entire sequence of tokens.

• For a text 𝑥1, … , 𝑥𝑇 , the joint probability is

𝑃(𝑥1, … , 𝑥𝑇 )
= 𝑃(𝑥1) 𝑃(𝑥2 ∣ 𝑥1) ⋯ 𝑃(𝑥𝑇 ∣ 𝑥1, … , 𝑥𝑇 −1)

=
𝑇

∏
𝑖=1

𝑃(𝑥𝑖 ∣ 𝑥1, … , 𝑥𝑖−1)

• This decomposition follows directly from the chain rule of
probability.
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Example: Sequence probability

• Consider the sentence: “I like apples”.

• The joint probability is decomposed as:

• 𝑃(“I”) = probability that “I” starts the sentence
• 𝑃(“like” ∣ “I”) = probability that “like” follows “I”
• 𝑃(“apples” ∣ “I like”) = probability that “apples” follows “I like”

• Multiplying these gives the overall probability of the sentence:

𝑃(“I like apples”) = 𝑃(“I”) ⋅ 𝑃 (“like” ∣ “I”) ⋅ 𝑃 (“apples” ∣ “I like”)
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You use language models every day!
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Why should we care about language modeling?

• Language modeling is a benchmark task that helps us measure
our progress on predicting language use.

• Language modeling is a sub-component of many NLP tasks,
especially those involving generating text or estimating the
probability of text:

• predictive typing
• speech recognition
• handwriting recognition
• spelling/grammar correction
• authorship identification
• machine translation
• summarization
• dialogue
• etc.

• Everything else in NLP has been rebuilt upon language
modeling: ChatGPT is an LM!
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How do we build a language model?

• Question: We want to estimate

𝑃(𝑥1, … , 𝑥𝑇 ) =
𝑇

∏
𝑖=1

𝑃(𝑥𝑖 ∣ 𝑥1, … , 𝑥𝑖−1)

• First idea: Approximate by looking only at a few previous words.
• This leads us to n-gram language models.
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n-gram language models



n-gram language models

• Definition: An n-gram is a sequence of n consecutive words.

• Example: “the students opened their ______”

• Unigrams: the, students, opened, their
• Bigrams: the students, students opened, opened their
• Trigrams:
• 4-grams:

• Idea: Collect statistics about how often n-grams occur and use
them to predict the next word.
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n-gram language models: 1. Markov assumption

𝑃(𝑥𝑡+1 ∣ 𝑥𝑡, … , 𝑥1) ≈ 𝑃 (𝑥𝑡+1 ∣ 𝑥𝑡, … , 𝑥𝑡−𝑛+2)

• 𝑡: position of the current token in the sequence
• 𝑛: size of the 𝑛-gram (the model looks back 𝑛 − 1 tokens)

Only the last (𝑛 − 1) words matter.

• We assume that distant history does not strongly influence the
next word.

• This reduces the problem from “consider the whole history” to
“just a short context window.”

• Analogy: Predicting the next word is like continuing a
conversation. (i.e., You don’t need to remember everything said
5 minutes ago, just the last few words.)

19
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n-gram language models: 2. conditional probability

• Definition: Conditional probability is

𝑃(𝐴 ∣ 𝐵) = 𝑃(𝐴, 𝐵)
𝑃(𝐵) .

• Apply this to n-grams:

𝑃(𝑥𝑡+1 ∣ 𝑥𝑡, … , 𝑥𝑡−𝑛+2) = 𝑃(𝑥𝑡+1, 𝑥𝑡, … , 𝑥𝑡−𝑛+2)
𝑃 (𝑥𝑡, … , 𝑥𝑡−𝑛+2) .

• e.g., the cat is cute
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• Definition: Conditional probability is
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n-gram language models: 3. Example (4-gram)

As the proctor started the clock, the students opened their _____

As the proctor started the clock,the students opened their _____

Conditioning only on the last three words:

̂𝑃 (𝑤 ∣ students open their) = count(students open their𝑤)
count(students opened their) .

Suppose in the corpus:

• students opened their occurs 1000 times,
• students opened their books occurs 400 times, so

𝑃(books ∣ students opened their) = 0.4,

• students opened their exams occurs 100 times, so

𝑃(exams ∣ students opened their) = 0.1.
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Problems with n-gram language models

• Data sparsity: Zero probability if an n-gram never appears

• Storage cost: Must store counts for all observed n-grams (e.g.,
early Google Translator used huge n-gram tables).

• Practical note: Easy to build (e.g., a trigram LM on a million-word
corpus in seconds), but results could be sparse and limited.

• Sparsity worsens as 𝑛 increases (rarely 𝑛 > 5 in practice).

̂𝑃 (𝑤 ∣ today the) = count(today the 𝑤)
count(today the)
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Window-based neural language
models



Fixed-window neural language models

Idea (Bengio et al., 2000, 2003):

1. Use a small context window of previous words

2. Map each word to an embedding
3. Combine them through a feed-forward network
4. Output a probability distribution for the next word
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Fixed-window neural language models
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Fixed-window neural LMs: Pros & Cons

• Advantages over n-gram LMs:

• No sparsity problem (embeddings generalize to unseen
sequences).

• No need to store all n-gram counts.
• Limitations:

• Fixed context window is too small; cannot capture long-range
dependencies

• The students who sat quietly in the large lecture hall were
waiting for the professor. (subject–verb agreement)

• Jane met with Mary after work because she had an important
announcement. (pronoun resolution)

• Enlarging the window makes the weight matrix 𝑊 grow huge.

• Next step: We need architectures that can

1. handle arbitrary-length input,
2. share parameters efficiently,
3. capture sequential order and proximity.
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RNNs



Overview

RNNs are widely used to process continuous data such as time series.

26



They work by retaining past information while processing new input.
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For example, changes in stock prices.
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Or sequences like words in a sentence.
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Or sequences like words in a sentence.

35



Or sequences like words in a sentence.
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RNNs can effectively handle data where order matters.
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Think of RNNs as learning by extracting temporal features from
time-series data.
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Moreover, RNNs evolved into LSTMs
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Moreover, RNNs evolved into LSTMs and eventually into Transformers.
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We will discuss (1) the structure, (2) the algorithms for learning
sequential information, and (3) the uses of RNNs.
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1. Structure

The structure of an RNN is simpler than you might think.
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The structure of an RNN is simpler than you might think.

43



What an RNN does is to take an input vector 𝑥,
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perform internal computations,
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and produce an output vector ̂𝑦.
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This is the feedforward process of the RNN.
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The types of input vectors 𝑥 and output vectors ̂𝑦 can vary widely.
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Time-series data (e.g., characters, stock price graphs, musical notes),
as long as it can be represented sequentially, can be used as input.
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So, what is the benefit of processing sequential data?
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For example, let’s assume this RNN is a model that translates English
into Spanish.
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Suppose it encounters the word bat in English.
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It has two possible meanings: a baseball bat or a flying bat.
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It has two possible meanings: a baseball bat or a flying bat.
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However, if the previous word is baseball,
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then with high probability, bat will be translated as bate in Spanish.
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When translating baseball,
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When translating baseball,
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the internal state ℎ is set with the processed representation of
baseball.
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Through this internal computation, baseball is translated into
béisbol,
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and when the model later encounters bat,

61



the hidden state created while translating baseball
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influences how bat is translated – this is the core idea of an RNN.
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The hidden state ℎ gets updated to combine the context of both
baseball and bat,
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and thus, the probability of translating bat as bate (bat for baseball)
becomes much higher than translating it as murciélago (the animal).
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And thus, the probability of translating bat as bate (bat for baseball)
becomes much higher than translating it as murciélago (the animal).
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2. Algorithm/Training

• Idea: Repeatedly apply the same weight matrix 𝑊 at each time
step

• Maintain a hidden state over time, feeding it back into the
network to capture temporal dependencies
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2-1. The Simple RNN language model

70



2-2. Training an RNN Language Model

1. Start with a large text corpus, represented as a sequence of
words 𝑤1, … , 𝑤𝑇 −1, 𝑤𝑇 .

2. Feed this sequence into the RNN-based language model.
3. At each time step 𝑡, the model outputs a probability distribution

ŷ𝑡 over the vocabulary.

• Internally, the RNN updates its hidden state h𝑡, then applies a
linear layer followed by softmax:

ŷ𝑡 = softmax(𝑊𝑜 h𝑡 + 𝑏𝑜).

• Each component of ŷ𝑡 corresponds to

𝑃(𝑤𝑡+1 = 𝑣𝑖 ∣ 𝑤1, … , 𝑤𝑡),

i.e., the probability that the next word is 𝑣𝑖.
• Put simply, at every step 𝑡, the model predicts the likelihood of
each possible next word given all preceding words

• autoregressive, causal LM generation
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𝑃(𝑤𝑡+1 = 𝑣𝑖 ∣ 𝑤1, … , 𝑤𝑡),

i.e., the probability that the next word is 𝑣𝑖.
• Put simply, at every step 𝑡, the model predicts the likelihood of
each possible next word given all preceding words

• autoregressive, causal LM generation

71



2-2. Training an RNN Language Model

1. Start with a large text corpus, represented as a sequence of
words 𝑤1, … , 𝑤𝑇 −1, 𝑤𝑇 .

2. Feed this sequence into the RNN-based language model.
3. At each time step 𝑡, the model outputs a probability distribution
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• Loss at step 𝑡:

𝒥(𝑡) = −
|𝑉 |
∑
𝑖=1

𝑦(𝑡)
𝑖 log ̂𝑦(𝑡)

𝑖 = − log ̂𝑦(𝑡)
𝑤𝑡+1 ,

where:
• 𝑦(𝑡): one-hot vector for the true next word 𝑤𝑡+1.
• ̂𝑦(𝑡): predicted probability distribution over the vocabulary from
the softmax layer.

• This is the cross-entropy loss between the predicted distribution
and the true label.
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Example: Why one-hot vectors in the loss?

• Vocabulary: {apple, banana, orange} (|𝑉 | = 3)

• Model prediction (softmax output at step 𝑡):
̂𝑦(𝑡) = [0.2, 0.7, 0.1]

• True next word: apple

𝑦(𝑡) = [1, 0, 0] (one-hot vector)

• Cross-entropy loss:

𝒥(𝑡) = −
3

∑
𝑖=1

𝑦(𝑡)
𝑖 log ̂𝑦(𝑡)

𝑖 = − log ̂𝑦(𝑡)
apple = − log 0.2 ≈ 1.609

• A one-hot vector marks the position of the true word in the
vocabulary.

• In cross-entropy, this ensures the loss only depends on the
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• Overall (average) loss over the sequence:

𝒥(𝜃) = 1
𝑇

𝑇
∑
𝑡=1

𝒥(𝑡)(𝜃)

• Sum the losses across all time steps.
• Divide by the sequence length 𝑇 to normalize for varying
sequence lengths.

• This gives the average negative log-likelihood per word, the main
training objective of the RNN language model.
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2-3. Training in practice

• However, computing the loss and gradients over the entire
corpus 𝑥1, … , 𝑥𝑇 is prohibitively expensive.

• In practice, we split the corpus into smaller units (e.g., individual
sentences or documents).

• Recall: Stochastic Gradient Descent (SGD) computes the loss
(using cross‐entropy) and gradients on a small batch of data,
then updates the model parameters.

• Concretely, for each batch of sentences, we

1. compute the batch loss 𝒥(𝜃),
2. compute the gradient ∇𝜃 𝒥(𝜃),
3. update 𝜃 ← 𝜃 − 𝜂 ∇𝜃 𝒥(𝜃),
4. and repeat.
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2-4. Training: Backpropagation

• The loss 𝐽 (𝑡)(𝜃) depends on the shared weight matrix 𝑊ℎ at
every time step.

• Therefore,
𝜕𝐽 (𝑡)

𝜕𝑊ℎ
=

𝑡
∑
𝑘=1

𝜕𝐽 (𝑡)

𝜕𝑊 (𝑘)
ℎ

.

• In other words, the gradient w.r.t. the repeated parameter is the
sum of its contributions over all time steps.

• Why? Because the RNN “unrolls” in time but reuses the same
𝑊ℎ at each step (parameter sharing). 77



2-4. Training: Backpropagation
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2-5. Application: Generating text

Just like an n-gram language model, you can use an RNN model to
generate text by repeated sampling. The sampled output becomes
the next step’s input.

79



Just like an n-gram language model, you can use an RNN model to
generate text by repeated sampling. The sampled output becomes
the next step’s input.

Example
• Start token: <S>
• Step 1: Model predicts distribution, sample my
• Step 2: Input = my, sample favorite
• Step 3: Input = favorite, sample season
• Step 4: Input = season, sample is
• Step 5: Input = is, sample spring

⇒ “my favorite season is spring”
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2-6. Evaluation: Perplexity

• The most common evaluation metric for language models is
perplexity.

Perplexity(𝑤1∶𝑇 ) = 𝑃(𝑤1∶𝑇 )− 1
𝑇 = exp(− 1

𝑇

𝑇
∑
𝑡=1

log 𝑃(𝑤𝑡 ∣ 𝑤1∶𝑡−1))

• Definition: Exponential of the average cross-entropy loss.
• Intuition:

• Measures how “surprised” the model is when predicting the test
data.

• Equivalent to the model’s effective average branching factor (i.e.,
how many plausible next words it considers at each step).

• Interpretation: Lower perplexity ⇒ model is less “perplexed”
and makes more accurate predictions.

https://github.com/asahi417/lmppl
https://github.com/Picovoice/llm-compression-benchmark
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2-7. Other uses: Sequence tagging

e.g., part-of-speech tagging, named-entity recognition
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e.g., sentiment classification
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e.g., question answering, machine translation
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e.g., speech recognition, machine translation, summarization
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Wrap-up



Wrap-up

• Language modeling: A system that predicts the next word

• n-gram language models
• Window-based neural language models
• RNNs

• time series data
• structure
• loss function
• evaluation
• applications
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